37,719 research outputs found

    Some Issues in a Gauge Model of Unparticles

    Full text link
    We address in a recent gauge model of unparticles the issues that are important for consistency of a gauge theory, i.e., unitarity and Ward identity of physical amplitudes. We find that non-integrable singularities arise in physical quantities like cross section and decay rate from gauge interactions of unparticles. We also show that Ward identity is violated due to the lack of a dispersion relation for charged unparticles although the Ward-Takahashi identity for general Green functions is incorporated in the model. A previous observation that the unparticle's (with scaling dimension d) contribution to the gauge boson self-energy is a factor (2-d) of the particle's has been extended to the Green function of triple gauge bosons. This (2-d) rule may be generally true for any point Green functions of gauge bosons. This implies that the model would be trivial even as one that mimics certain dynamical effects on gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation improved, calculation and conclusion not modified; refs added and updated. Version to appear in EPJ

    Modulation efficiency of LiNbO<sub>3</sub> waveguide electro-optic intensity modulator operating at high microwave frequency

    No full text
    The modulation efficiency, at high-frequency microwave modulation, of a LiNbO3 waveguide electro-optic modulator is shown to be degraded severely, especially when it is used as a frequency translator in a Brillouin-distributed fiber-sensing system. We derive an analytical expression for this attenuation regarding the phase-velocity mismatch and the impedance mismatch during the modulation process. Theoretical results are confirmed by experimental results based on a 15 Gb/s LiNbO3 optical intensity modulator

    Single-particle machine for quantum thermalization

    Full text link
    The long time accumulation of the \textit{random} actions of a single particle "reservoir" on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and "coherently heated" as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.Comment: 9 pages,4 figures

    A three-beam setup for coherently controlling nuclear state population

    Full text link
    The controlled transfer of nuclear state population using two x-ray laser pulses is investigated theoretically. The laser pulses drive two nuclear transitions in a nuclear three-level system facilitating coherent population transfer via the quantum optics technique of stimulated Raman adiabatic passage. To overcome present limitations of the x-ray laser frequency, we envisage accelerated nuclei interacting with two copropagating or crossed x-ray laser pulses in a three-beam setup. We present a systematic study of this setup providing both pulse temporal sequence and laser pulse intensity for optimized control of the nuclear state population. The tolerance for geometrical parameters such as laser beam divergence of the three-beam setup as well as for the velocity spread of the nuclear beam are studied and a two-photon resonance condition to account for experimental uncertainties is deduced. This additional condition gives a less strict requirement for the experimental implementation of the three-beam setup. Present experimental state of the art and future prospects are discussed.Comment: 13 pages, 9 figures and 4 tables. arXiv admin note: substantial text overlap with arXiv:1011.442

    All-Electromagnetic Control of Broadband Quantum Excitations Using Gradient Photon Echoes

    Full text link
    A broadband quantum echo effect in a three level Λ\varLambda-type system interacting with two laser fields is investigated theoretically. Inspired by the emerging field of nuclear quantum optics which typically deals with very narrow resonances, we consider broadband probe pulses that couple to the system in the presence of an inhomogeneous control field. We show that such a setup provides an all-electromagnetic-field solution to implement high bandwidth photon echoes, which are easy to control, store and shape on a short time scale and therefore may speed up future photonic information processing. The time compression of the echo signal and possible applications for quantum memories are discussed.Comment: 5 pages, 4 figure

    Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SH waves

    Get PDF
    A unidirectional fiberglass epoxy composite plate specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic non-contact input-output characterization by tracing SH waves in the continuum is studied theoretically with a transmitting and receiving transducer located on the same face of the plate. It is found that the directional dependence of the phase velocity of the SH waves travelling in the transversely isotropic medium has a significant effect on the delay time as opposed to the phase velocity of the SH wave travelling in an isotropic medium

    Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by SV waves

    Get PDF
    A unidirectional fiberglass epoxy compostie specimen is modelled as a homogeneous transversely isotropic continuum plate medium. Acousto-ultrasonic noncontact input-output characterization is studied theoretically with a transmitting and a receiving transducer located on the same face of the plate. The single reflection problem for an incident SV wave at a plane boundary in transversely isotropic medium is analyzed. An obliquely incident SV wave results in a reflected SV wave and a reflected P wave for an angle of incidence of the incident SV wave less than the critical angle. Otherwise, there exists only an SV wave in the medium as the reflected P wave degenerates into a surface wave travelling parallel to the plane boundary. The amplitude ratio of the reflected SV wave is -1 when the angle of incidence is greater than or = the critical angle. The directional dependence of the phase velocity of the SV wave propagating in the transversely isotropic medium has a significant effect on the delay time, as opposed to the directional independence of the phase velocity of a shear wave propagating in an isotropic medium. The displacements associated with the SV wave in the plate and which may be detected by the noncontact receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load
    • …
    corecore